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ABSTRACT 

By solving the energy and the continuity equations for 0 + and H ', the ob- 

served latitudinal electron temperature distribution observed by Expiol;er XXX 

can be reproduced up to latitudes of 60" with a trough a t  the equator and niaxima 

at middle latitudes. At geomagnetic latitudes above 60", however, the theoretical 

temperatures decrease significantly below the observed temperatures. It is 

suggested that the depletion of H +  observed at high latitude by ion inass spec- 

t rometers  could be related. Such a depletion of the light ion population causes 

the electron cooling rate to the neutral atmosphere, to decrease; a n  effect that 

would enhance the temperature. 
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THE LATITUDINAL TEMPERATIJTlE STRUCTllRE OF THE 

*roPsIm IONOSPHERE 

by 

H. G. Mayr, L. H. Brace and W. Crevier 

Aeronomy Branch 

INTRODUCTION 

The electrostatic probe experiment on Explorer XXTI reveals that during 

da.@ime the electron temperature Te at 1000 kilometers exhil)its a minimum at 

the equator and maxima at middle latitudes. An opposite trend is apparent i n  

the electron densityNe , which shows a maximum at the equator and minima at 

middle lalitudes (Brace, Reddy, Mayr (1967). Brace, Mayi-. Rcdd.v ( I  968)). 

Although from simple energetic considerations such an i n v e r s e  relationship 

between temperature and density is suggested, the relationship is not simple if 

one actually considers the very complex interrelation between the particle and 

energy balance of the ionosphere on a global basis. In t h c  topside ionosphere 

temperature and density are related through numerous processcs,  all of which 

have to satisfy the energy and continuity equations. An additional complication 

i s  that these relations have to be satisfied in field tubes of greatly different 

spatial extension, as various latitudes are considered. 

The subject of this paper is to report on the computation of the latitudinal 

temperature structure under the assumption of steady stale and field aligned 

diffusion. A discussion of the heating and cooling rates above 1000 km will show 

that the collisional energy loss remains important a t  high altitudes thus 
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, 
reamphasizes the importance of neutral hydrogen for the thernial balance of the 

topside ionosphere (Brace et al., 1967, Mayr et al., 1967). A c:omparison be- 

tween the computed and observed temperatures will provide evidence for the 

dynamic state of the protonosphere which is consistent with iot i  conlpositioii 

measurements. 

, 

THEORY 

The basic form of the energy and continuity equations as well as the method 

of  their integration employed here  are almost identical to the treatment in Mayr. 

Brace, Dunham (1967). Some of the features common to this and the previous 

study are briefly reviewed here. 

The physical processes entering the ion continuity equations are: charge 

exchance between ions and neutrals, photoionization o f  0 and 11. and aml>ipolar 

diffusion along field lines. I t  is assumed that a t  altitudes below 400 lmi 11’ is in 

chemical cquilibriurn with 0, €1, and 0’ through the charge exchange reaction, 

thus providing the lower boundary condition for the integration o f  the €1’ con- 

tinuity equation. The boundary condition for 0’ requires that the electron density 

be in agreemcnt with measurements from Explorer XXII a t  1000 km (n race ,  

Reddy, Mayr, 1967). These measurements were  made during equinox conditions: 

so we postulate that the solutions of the continuity equations arc: syinnictrical 

with respect to the equatorial plane. ‘1771s implies that the ion fluxes and dc?nsity 

gradients are zero a t  t h e  equator, thus providing the necessary additional 

boundary conditions for the second order  continuity equations. 

Several inodifications were made of the ea r l i e r  treatment of the energy 

balance. ‘rhey a re  discussed here  in detail. The assumption of thermal 
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equilibrium (Te = Ti) 

equations for electrons and ions become 

was dropped. Neglecting ion heat conduclion the energy 

V 

with the same  notations as in Mayr,  Brace, Dunham ( 1  967). 'I'ho coc4'iciciits 

K in  the loss ra tes  for electron-ion collisions a r e  acwording to Brace, 

Spencer, Dalgarno (1965). 

K 
0 ' '  H 

The electron heat conduction term in Eq. 1 is density independent while the 

energy gain and loss  t e rms  increase with increasing plasma anti neutral con- 

centrations. Thus the importance of heat conduction relative to loss and gain 

wi l l  'ne smailest at. low 9ltitiides. Our estimations indicate thilt ,hiring da.ytimc 

heat conduction contributes not more than 10% to the thcnnal cnc~rgy  Lxtlance at  

300 km. Therefore, at this  altitude w e  neglect heat conduction and calculate the 
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electron and ion temperatures using Eqs. 1 and 2. T,,, togethcr with the equa- 

torial symmetry condition 

serve as boundary conditions for the integration of Eq. 1 up to the equator. 

Thc ra te  of' non local heating, cxprcssed in Eq. 1 as pN,, w a s  described in 

a more realistic form than in the previous paper. It was assumctl t h a t  the 

escaping fast electrons, responsi tile for this cncrgy input (Ccisl(lt. and I3owhill 

(1965)),  have an initial energy of 10 c V  at 300 km with velocitics dircctcd par- 

allel to thc magnetic field. These electrons lose energy to the ;imbient plasma 

at a rate of 

K = 1.95 x [ e V 2  cm'] (3) 

according to I3utlcr and hekingham (1982), Dalgarno et al. (196:;). Itlectrons 

traveling up along thc fiuld line thus h a v e  an cncrgy distrit)utiori 

4 



4 

where the subscript u stands fo r  the upgoing electrons. At the equato 1- the 

energy will he 

which is thc energy that is carried up by fast  electrons from t h c .  o t l ic~t .  hemis- 

phere assuming symmetry about the equator. These elcctrons h a v e  :In energy 

distribution of 

when going downwards. 

The  total flux of these electrons through the field tube remains constant and 

thus the flux dcmsity varics as 

where B is the magnetic field intensity along a field line, Bo is i t s  value at 300 

km, and j is the flux density at this altitude. Considering Eq. 7 and Eq. 3 the 

energy input p e r  unit volume and time is then 
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Combining the e n e r a  contributions from thc upgoing and downgoing clectron 

fluxes, p takes the f o m  

From Eq. 4 and Eq. 6 (where E, and E, are defined) it is evident that theo- 

retically thc cnergy expressions may become zero. However, 12q. 3 from which 

they w e r e  derived is only valid for electron energies abovc the thermal cnergy 

of the ambient clectrons which is in the ordcr of 0.5 c V .  The ciwrgy loss ra tc  

of electrons approaching this value will,  according to Eq. :I be u p  to 20 times 

greater than the rate  a t  the original energy of 10 eV. A s  the clc*c~trons become 

thermalized the loss rate must drop from this high value to Z ~ I Y J .  Thc simplest 

description of this term i s  to assume a discontinuous drop in the loss  rate to 

zero for energies below some arbi t rary chosen cut off energy. W e  havc choscn 

this energy a s  2 eV. A s  a result  of using this cut off, about 20!& of the fast elec- 

tron energy w a s  not considered and consequently the clectron flux w e  arrived a t  

wi l l  bc high by about the same percentage. 

IWSULTS ANI) DISCUSSION 

Using Jaccia's modcl for low solar activity (T,, = 830°K ant1 101 5 o o  - 7.5 

x 106/cc) and using 1111 5 , , o  - 2 x 105/cc the energy and continuity ccpiations 

were solved. The electron temperature as a function of latitutlcb is shown in solid 

lines for several altitudes in Figure 1. For comparison, the ohscrvccl latitudinal 

temperature distribution at 1000 km (from Explorer MI, Brace, lieddy, Mayr 

(1967)) i s  also presented. Good agrcement exists up to 60" gcmm:tgnotic latitude; 
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the trough at the equator and the maximum at middle latitude arc reproduced. 

This w a s  achieved by employing the values 

j ,  7 . 5  x IOR/cm2sec 

at each latitude. 

To gain some insight into the physical processes that form the latitudinal 

temperature structure we present in Figure 2 the various cncrgy rates inte- 

grated ovcr field tubes above 1000 km (with 1 c m 2  basis area).  Thc t1:ished line 

shows the energy input due to  fast clectrons, the dashed-dotted linc shows the 

energy loss bctween plasma and neutral atmosphere and the solitl line shows the 

difference between input and loss which is equal to the heat flux ( ( 1  lC.', 

a t  1000 km. 

dTe/Js) 

The latitudinal variation of the energy input above 1000 km clcpcnds strongly 

on the rate  at which the fast electrons lose their energy at  lowcar altitudes. Near 

thc equator, the electron density is high and almost all of the eiwrgy is absorbed 

below 1000 km. Thus only a small amount of energy can heat the joriosphcre 

above this height. With increasing latitude the electron density (Iccrcascs and 

an increasingly larger  proportion of the energy becomes avaj1al)le as input at 

higher altitudes. Above 40" the latitudinal variation in the electron density i s  

small and therefore the energy input above 1000 km stays constmt. 

Vie total rate of energy loss due to collisions in fizlcl lubes :hove 1000 km 

(also shown in Figure 2) depends proportionally on the ion contcwt and on the 

density of the neutral atmosphere (primarily neutral hydrogen). Atlditionally , 
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the loss ra te  is a Iunction of the ion and neutral species involved in this loss 

process. Hydrogen ions lose their energy most effectively to hytlrogen atoms, 

and similarly oxygen ions cool most rapidly to neutral oxygen l ~ i t  at a rate 4 

t imes lower than the loss rate  between 11' and €1 (Brace, Spenc:c:i-, 1)alg:irno 

(1965)). At the equator, the loss rate is small  because of the small field tubes 

and their pirt icle population. With increasing latitude the field tube volume 

increases and so does the total ion content as evident from Pigi~rc' :I (where the 

ion content above 1000 km is shown as a function of latitudc:). 'I'hc rcmdt i s  an 

increase of the energy loss rate. Between 20" and 40" latitude thc ion content 

increases further and there is a small  increase in the population of neutral 

particles. I3ut simultaneously the mean ion mass  incrcascs (shown i n  k'igiire 4) 

thus decreasing the effectiveness of t h e  cooling process. 'L'hc? ncl rcsiilt is that 

the loss ra te  remains ncarly constant. A t  latitudes above 40" tlicb I'iolcl tiil,c 

volumes strongly increase and therefore the contact between plasl1Iil and neutral 

atmosphere involves significantly larger  particle populations. The riel effect is 

that the loss rate rapidly increases at higher latitudes. 

The variation of the heat flux (in solid line in Figure 2) reflects thc very 

different behavior of input and loss ra tes  with latitudes. Near the equator 

both energy and loss rates are low. The loss exceeds the gain and this requires 

a negative tempcraturc gradient along field lines that contributcbs to tlic low 

equatorial temperature. Up to middle latitudes the energy input increases whi l e  

the loss  function shows little variability. Therefore the heat flirx increases as 

does the temperature. Above 40" the energy loss starts to increase and the 

input levels off. The result is that the heat flux forms a maximum at 50" where 

Te is also highest. I3cyond this latitudc the energy loss  dolniniltcs atid lcnds to 
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the rapid dcerease of the heat flux and to a s imilar  decrease of the temperature 

at high latitudes. 

Figure 1 shows that a high latitudes (almve GO"), the theoretical tempera- 

tures  decrease significantly below the measured ones. This is :dso evident in 

the equatorial temperature profile of Figure 5. The temperaturc decreases at  

high altitudes (corresponding to  high latitudes) in contrast to mcasurcments by 

Serbu and Maicr (1966) who report  a steady increase of Te with altitude, reach- 

ing temperatures of several thousand degrees at altitudcs of a I'cw earth radii. 

The reason for this discrepancy may be that some of the assumptions in our 

model are not valid at high latitudes. It is possible that additional heat sources 

such as hydromagnetic waves or energetic particles are siLmificant thew. 

Another alternative is that the steady state and field aligned diffusion model, 

which does not allow for any proton fluxes is inappropriate at high latitudes. 

The former would mean an increase in the energy input, while the latter, as will 

be shown below, can result in a reduction of the energy loss  mcchmisnt; both 

effects would increase the temperature. 

The ion composition which was simultaneously computed with the electron 

temperature WRS used to determine the mean ion mass,  m', at 1000 Itm. It is 

shown in Figure 4 in comparison with results deduced from OGC) 2 (Taylor et  al. 

(1968)). The agreement is good up to middle latitudes. However above 50°, where 

the discrepancy in the temperature also becomes apparent, the observed mean 

ion mass increases to its maximum value of 16 AMU, whereas the computed 

values of m+ decrease to 3 AMU. This means that in our model the cieciron 

density scale height is too high by a factor of 5 and consequently the total ion 

content above 1000 km is too high. The effects on the thermal balance arc 
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obvious. A s  shown earlier, the collisional cnergy loss rate is v e r y  sensitive 

to the plasma population and mean ion mass. A reduction of thc proton contcnt, 

in accordance with the mean ion mass observation, would thus Icad t o  a reduction 

in the cnergy loss and this would increase thc tempernturc?. 

An increase in the elcctron tcmperaturc would in turn raisc the incan ion 

mass. However, it was demonstrated in Mayr, Brace, Dunham (1967) that the 

mean ion mass, observed at high latitudes, i s  f a r  too high to be accounted for by 

the observed temperatures at 1000 km. Therefore one might postulatc upward 

fluxes of protons that deplete t h e  proton concentration. Two rncchanisms could 

induce fluxes: the dynamic coupling between F, region and protonosphere as 

discussed by Hanson and Patterson (1964), or  escape of protons in combination 

with diffusion across field lines, a mechanism that ties thc high latitudc deple- 

tion of H t  to  thc plasmapause (Mayr, 1968). 

A fu r the r  consequence of t h e  decrease of the ion concentration at high lati- 

tudes would Iw that the classical expression for the clcctron heat conductivity 

is no longcr val id  because of thc long mean free path. For low densitics it has 

to be modified with the  result that the effective heat conductivity decreases  'and 

thus could account for the high temperatures observed by Serbu and Maier 

(1966) at high altitudes (Mayr and Volland (1968)). 
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CONCLUSION 

It is concluded that in accordance with earlier papers (Brcicc, Roddy, Mayr 

(1967); M a y r ,  Draw, Dunham (1967)) collisional cooling betwcen the plasma tmd 

the neutral atmosphere is still an  important proccss above 1000 Itni. At the 
t 

equator the loss rate is small  but significant when compared with the low energy . 
input. At  high latitudes (above 50") the loss process increases so strongly that 

it gains a dominating role in  the thermal balance. Since neutral hydrogen is 

responsible for cooling the plasma above 1000 km i ts  significance in the thcrnial 

structure of  t h c  topside ionospherc i s  apparent. 

The failurc to reproduce the mcasurcvl high electron temp(bixtiires lit high 

latitudes is found to be consistent with thc discrepancy kwtwecn thc lhcoretical 

and observed mean ion mass. It suggests that proton Fluxcs depletc thc proton- 

osphcre and thus account for a decrease of the energy loss in tliv pi.otonospherc, 

an effect that would enhance the temperature. 

12 



n 

REFERENCES 

1. Brace, L. H., N. W. Spencer, and A. Dalgarno, Detailed behavior of the mid- 

latitude ionosphere from Explorer 17 satellite, Planetary Space Sci., 13, 

647-666,1965. 

2. Brace, L. H., B. M. Reddy, and H. (2. Mayr, Global behavior of the ionosphere 

at 1000 km altitude, J. Geophys. Res., 72, 265-283, 1967. 

Brace, L. H., H. G. Mayr, and B. M. Reddy, The ear ly  effects of increasing 3. 

solar activity upon the temperature and density of the 1000 km ionosphere, 

J. Geophys. Res., 73, 1607-1615,1968. 

4. Butler, S. T., and M. J. Buckingham, Energy loss  of a fast ion in a plasma, 

Phys. Rev., 126, 1-4, 1962. 

ti. Dalgarno, A., B. M. McElroy, and R. J. Moffett, Electron temperatures in 

the ionosphere, Planetary Space Sci., 11,463-484, 1963. 

6. Geisler, J. E., and S. A. Bowhill, Exchange of energy between ionosphere 

and protonosphere, J. Atmospheric Terrest. Phys., 27, 1119-1146, 1965. 

7. Hanson, W. B., and T. N. L. Patterson, The maintenance of the nighttime 

F-layer, Planet. Space Sci., 12, 979-997, 1964. 

Mayr, H. G., L. H. Brace, and G. S. Dunham, Ion Composition and tempera- 8. 

ture in the topside ionosphere, J. Geophys. Res., 72, 4391-4404, 1'367. 

9. M a y ,  H. G., The plasmapause and its relation to the ion composition in 

the topside ionosphere, NASA-Document X-621-67-570, to be published in 

Planetary Space Sci. 

13 



10. Mayr, H. G., and H. Volland, A model of the magnetospheric temperature 

distribution, NASA-Document X-621-67-569, to  be published in J. Veophys. ___- 

Res. - 

11. Serbu, G. I>., and E. J. R. Maier, Low encrgy electrons measurctl on IM1’2, 

- J. Geophys. I k s . ,  71, 3755-3766, 1966. 

12. Taylor, €1. A., Jr., H. G. Brinton, M .  W.  Pharo III, and N. K. I<;ihman, 

Latitudinal variation of the composition of the topside ionosphere; l i r u t  

results of the OGO-2 ion spectrometer. NASA Document X-621-68-202, to 

be pub1 .ished in J. Geophys. Res. 

14 



4000 
I 

1 

3000 

2 
e 2000 z 

1 ooc 

C 

10.000 km \ 

I, .OOO km 

- 300 km 
--/- )tst--)< Computed 

Explorer XXI I 
Vernal Equinox 

1965 

--- 

I I I 

GEOMAGNETIC LATITUDE 

20 40 60 E 3 

Figure 1 . Computed Latitudinal Electron Temperature Distribution for Various 
Altitudes (Solid Lines). For Comparison the Electron Temperature at 1000 km from 
Explorer XXII, Vernal Equinox 1965 (Brace, Reddy, Mayr (1967)) i s  Shown in 
Dashed Line. 
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Figure 2 .  Energy Rates Integrated over Field Tube Volumes above 1000 km (with 
Basis Area of 1 crn2 ): The Energy Input due to Escaping Fast Electrons (in Dashed 
Line), the Energy Loss Rate due to Collisions between Ions and NeutraIs(in Dashed 
Dotted Line), and the Difference of Input Minus Loss Which i s  Equal to the Heat 
Conduction Flux a t  1000 km, (Solid Line). 
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